
Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 1 of 9

Infinite Prognostics & Diagnostics: A System Architecture to Support P/D
Algorithms Before They Even Exist

James Branigan

Band XI International, LLC

Creedmoor, NC

 John Cunningham

Band XI International, LLC

West Hartford, CT

 Patrick Dempsey

Brett Hackleman

Paul VanderLei

Band XI International, LLC

Bracey, VA, Scottsdale, AZ, and Grand Rapids, MI

ABSTRACT

A combination of real world experience and new research initiatives will open up the universe of

prognostic and diagnostic algorithms that can be created in the future. This presents the challenge of creating a

system architecture that enables effective support of an infinite set of future algorithms even before they have

been conceived, designed, implemented, tested, and approved for use. The Arbor architecture enables five

critical elements to meet this challenge: (1) clean integration between legacy and new software, (2) remote, over

the air provisioning of algorithms, (3) flexible data structures capable of evolving, (4) control points for the

algorithm to report findings to in-vehicle occupants, and (4) a data collection strategy for failure incident

reporting. Many algorithms are impossible to develop until we collect real world performance and failure

information from on the vehicle. The Arbor system collects this information and feeds it off-board for analysis.

Researchers analyze the data and develop diagnostic or prognostic algorithms that can then be deployed to a

single vehicle experiencing odd behaviors or to an entire fleet, preemptively. A prognostic algorithm written, or

modified, as an Arbor application can define its own outputs, which are then visible to the vehicle operator.

These same outputs can be broadcast to a service technician with a diagnostic scan tool or to a remote

operational command site, contingent on available communications links. Effective deployment of prognostic

algorithms enables costly failures to be predicted ahead of time, thereby improving safety, reducing costs, and

minimizing down time for equipment in order to effect more efficient fleet operations.

INTRODUCTION

The lifecycle of a vehicle model spans many years. Actual

field deployments uncover usage patterns that stress the

vehicle and its systems in new ways that result in failures.

Such failures may occur in unforeseen patterns or even in

carefully designed and rigorously tested subsystems or

individual components. Ideally, design engineers would

benefit from having an agent resident on the vehicle to

observe vehicle behaviors, collect observations, and transmit

data back to them for analysis. Unfortunately, they cannot

know a priori what data, or with what frequency, needs to be

collected so that this capability can be built into the base

system. With access to the right data, engineers could

analyze the actual field performance and develop effective

diagnostic and prognostic algorithms that could aid

personnel in at least diagnosing problems, if not providing

them advance warning of an impending failure. The

subsequent challenge revolves around deploying these

algorithms as vehicle agents. Each algorithm should be a

deployable unit to the vehicle. Each algorithm should be

capable of providing useful information to the occupants of

the vehicle about failures, encountered or impending, as well

as collecting specialized relevant data and transmitting it

back to the engineers for further analysis or record keeping.

Supporting this scenario requires an open, component-

based system architecture that facilitates integration of

heterogeneous components and evolution of underlying data

models. Unfortunately, nearly all embedded software is

developed as monolithic applications over very long periods

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 2 of 9

that include extensive and punishing system integration

testing. Their complexity alone often precludes

modification once they have been completed and deployed.

When updates and upgrades are available, these must pass

through the same rigorous testing procedures and then flow

through to an arduous manual installation procedure. This

process can be time consuming, costly, and requires manual

intervention.

This paper introduces the Arbor system architecture for in-

vehicle computing to address the challenges of creating an

open component-based in-vehicle computing platform that

can grow stronger in response to the challenges encountered

over time. Arbor offers a strong root system that integrates

closely with the vehicle bus and on board sensors, with the

ability to reach deeper into the vehicle and extend more

broadly to new sensors. Additionally, the component-based

model facilitates the growth of new branches to the system

that can extend the available functionality to serve new

missions, accommodate new subsystems, and more richly

support existing capabilities.

Arbor enables a class of applications, running on remote

devices that sense and interact with their environment. These

applications minimally consist of a sensing/controlling

portion, a logic portion, and a notification portion. The

sensing/controlling may interact with a multitude of

hardware sensors, including but not limited to Global

Positioning System devices (GPS), SAE J1939 devices

(CAN), Radio Frequency Identification (RFID) devices,

Programmable Logic Controllers (PLC), cameras, and radar

devices. The logic portion may run on the embedded

computing device, a handheld device, or remotely in a server

environment. The notification portion may utilize a screen to

notify an operator in the case of an in-vehicle system.

Alternatively, in the event of a remote sensor alarm, the

notification portion may send a high priority message to

headquarters or broadcast a peer-to-peer notification over a

deployed mesh network. There are many notification cases

along the spectrum that the Arbor system can support.

This paper focuses specifically on Arbor’s capability to

accommodate the needs of the prognostics and diagnostics

community. Arbor has already been fielded for commercial

equipment used in mining and construction, such as salt

harvesters and foundation drills. These fielded systems

monitor and direct a variety of sensors and actuators

connected to the J1939 CAN bus within the vehicle and also

collect, present, store, and forward diagnostic messages for

the vehicle occupant and engineers.

THE CHALLENGE

In a nutshell, the problem we are address revolves around

how to create an open platform for developing and

deploying applications that:

• Acquire sensor data,

• Analyze the data,

• Turn the data into useful information, and

• Relay that information to someone to use.

The fact that these systems will be deployed to in-vehicle

computing platforms that operate far from typical data

centers or software engineering facilities further complicates

the problem. These applications need to be installed,

patched and managed remotely and in quantity. General

connectivity may be intermittent, at best, and possibly quite

low bandwidth even when available. We assume that

periodically, the vehicles will be in range of base motor

pools where local connectivity would be stable and quite

fast. Additional constraints arise, because in-vehicle

hardware platforms typically consist of slower and less

powerful cores than standard desktop PCs.

Furthermore, in-vehicle applications, specifically

algorithms, will be developed and deployed over the full

lifetime of a fielded vehicle model, by a variety of vendors

using a range of programming languages. In order to achieve

the goal of building such an open platform, it is critical to

define both a data model and a system architecture that

supports the development of an open-ended, modular,

dynamically updatable, multi-programming language

capable application platform. The Arbor system architecture

and data model describes a reference implementation that

has been refined and executed over time to meet these

objectives.

DOD BROAD SYSTEM OBJECTIVES

Over the last decade, the United States military has made a

dedicated effort toward adopting open, standards-based and

commercial off the shelf (COTS) computing software and

hardware. Programs such as the Department of Defense

(DoD) Open Systems Joint Task Force (OSJTF) [1] and the

Navy’s Open Architecture Computing Environment (OACE)

[2] have shown how using open standards-based solutions

results in reduced cost, faster development, and greater

flexibility.

For example, the open source Linux operating system has

gained tremendous traction in the military due to its level of

POSIX conformance, widespread availability, large

developer and user base, and resulting lower development

and maintenance costs. Simply put, the cost of technology

change in open standards and open source architectures is

significantly less than it is with proprietary architectures.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 3 of 9

Beyond the platform level (hardware, device drivers, and

operating systems), open standards are developing for

tooling platforms (Eclipse Foundation) [3] and application

architectures and deployment (Open Services Gateway

Initiative Alliance) [4].

Prior interactions with the US Army Research,

Development, and Engineering Command (RDECOM) have

drawn out the following broad objectives in developing

future vehicle based systems:

• Open System Architecture

• Scalable, Integrated, and Modular

• Reliable, Available, and Maintainable

• Long Term Evolution Capability

• Reduced Procurement and Maintenance Costs

• Security Capabilities

• Training and Knowledge Transfer

LEGACY INTEGRATION

Proposing any new system architecture inevitably faces

resistance to change. Such resistance is often based in very

real, economic concerns regarding existing legacy systems.

Large investments have been made in the design,

development, testing, deployment, improvement, and

maintenance of the existing software and systems. No

responsible proposal would advocate a discontinuous jump

to any new system architecture without providing a means to

integrate the legacy base. Arbor’s design explicitly held

legacy integration as a primary, and critical, requirement.

Arbor provides an open, standards compliant mechanism

for supplying existing applications with a clean and simple

mechanism for pulling low-level data from devices.

Additionally, Arbor uses a similar mechanism enabling

legacy applications to post information for recording or

controlling devices. A more detailed discussion of these

mechanisms follows below through the example described.

PROVISIONING

Any well-designed, open, modular system architecture

should include a story for providing updates and upgrades to

the base system. Here, we define an update as any

correction or improvement to existing functionality and

upgrade to mean the addition of new functionality. We refer

to the process, procedures, and technologies employed to

deliver updates and upgrades as provisioning. We name a

given update or upgrade packaged for provisioning an

installable unit. The contents of an installable unit may

consist of code and/or data. The code may be in any

programming language and may be in source form (shell

scripts) or compiled (shared object libraries or executables).

The data may be a resource (language fonts, images, etc.) or

configuration files.

The Arbor system architecture incorporates provisioning

technology developed under the auspices of the Eclipse

Foundation and widely used to manage and deploy

installations of the Eclipse IDE itself, as well as runtime

applications built using Eclipse runtime technologies. This

provisioning technology is codenamed P2. Band XI has

played a central role in driving P2 to address the unique

challenges of resource constrained embedded platforms.

Although Eclipse built P2 using Java, we have helped drive

the Eclipse team to separate provisioning concerns in such a

way as to allow a non-Java, native provisioning agent to

reside on the embedded platform. Furthermore, P2 can

provision installable units that contain arbitrary resources

and code. This allows us to provision algorithms written in

C, MATLAB, or any other programming language.

The Arbor system can safely provision new algorithms

without worrying about impacting already installed

algorithms. It can also patch the sensing portion of the

application without worrying about destabilizing the

integration with the algorithm. This architecture is open,

scalable, modular, reliable, maintainable, easy to learn and

use, and provides a powerful model for long-range reuse and

evolution. As Figure 1 illustrates, what you are really after is

unparalleled operational quality in the systems you deploy.

We achieve this quality by combining reliability,

availability, and maintainability.

Quality

Figure 1: Operational Quality = Reliability !

Availability ! Maintainability

By leveraging the capabilities of P2, Arbor allows the

teams responsible for vehicle operations to maintain and

enhance the products and services in the field – 24 x7 x 365.

The software in products, and the services around them, can

now be updated dynamically via secure networks, to fix

problems, or add new functionality that adds value to the

soldier’s devices or to make services available on a range of

different-brand devices deployed across the service. These

innovative capabilities open completely new opportunities

for lower-cost maintenance and repair, or the availability to

add valuable new features without taking units out of

service. Expensive recalls and high development costs can

be reduced to meet increasing mission demands.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 4 of 9

ARBOR SYSTEM ARCHITECTURE

We’ve already mentioned that legacy application

integration and application provisioning significantly drove

the design of Arbor. It’s important to also understand the

general system engineering principles that drove the

development of Arbor.

The principles of quality for computer architecture are well

described by Dr. Fred P. Brooks and Dr. Gerrit A. Blaauw in

their book Computer Architecture: Concepts and Evolution.

[5] We appeal to these principles when faced with design

decisions. Weighing a design decision against each of the

principles helps to guide us to the right decision for the

architecture by enhancing its quality, extending its

usefulness, and lowering its long run cost. Brooks and

Blaauw state that high quality architectures should have the

following properties.

• Consistent

• Proper

• Orthogonal

• General

• Parsimonious

• Transparent

• Open-ended

• Complete

There are five high-level constraints that we must meet

with the Arbor system architecture and data model.

• Must perform on embedded platforms

• Must be capable of remotely provisioning new

features and bug fixes

• Must be programming language agnostic

• Must have vendor independent interfaces

• Must support existing data formats

We have learned a great deal from our past projects

building embedded systems. Filtering that experience

through the guiding principles listed above has lead us to

develop a set of more concrete, derived principles.

• Data formats must be open

• Don't invent unless necessary

• Simplicity is the answer for complexity, not more

complexity

• Programming language to programming language

interfaces should be avoided

• Avoid using push style notification, because pull

notification scales, while push notification does not

• Do not build a walled garden, a closed set or

exclusive set of services that create a monopoly

The Arbor Data Model is conceptually based on the World

Wide Web Consortium’s (W3C) Resource Description

Framework (RDF). [6,7] The RDF is an incredibly simple

and flexible resource model and the basis of the Semantic

Web [8]. The most well known form of RDF is the RDF-

XML format, however there are other published

representations of the RDF data model. The data model

vocabulary is described in the Web Ontology Language

(OWL). [9,10] Using OWL to describe the data model

provides myriad benefits, once the data is safely off boarded.

Data can be reasoned about using automated and

probabilistic methods. This makes the task of creating new

prognostic algorithms simpler and faster.

The Arbor Data Model uses the RDF data model to model

the discrete sensor events received and the actuator events

sent by the embedded platform. Arbor stores and marshals

this data in several simple formats that are known to be

efficient on embedded platforms: Comma Separated Values

(CSV) and JavaScript Object Notation (JSON) [11]. Band

XI has also investigated supporting the Common Data

Format (CDF) [12], using COBRA data from a Bradley

Fighting Vehicle.

From a vehicle systems domain perspective, the core

functions of the system architecture are to support the

following:

• Sensing & Logic Integration

• Provisioning

• Operator User Interface

• Storing and Offboarding Data

• Peer-to-Peer Messaging

We explore each of these functional requirements below.

Sensing & Logic Integration

Considering the earlier critical constraint of embracing

legacy applications, we already know that the sensing and

logic portions will be written in different programming

languages. This elevates the need to bridge the gap between

the languages in order to transmit the sensor data. The need

for a system level mechanism for integrating the sensing and

logic portions led us to consider multiple different

integration patterns. We chose an integration pattern based

on the design of the World Wide Web. The details of this

design decisions are described in our paper “Bringing Best

Practices from Web Development into the Vehicle” [13].

Operator User Interface

The in-vehicle operator’s user interface acts as a client to

the sensing platform, just like an algorithm is a client to the

sensing platform. The operator user interface discovers the

data for the sensors it cares about and then locates the latest

values of those sensors and displays them to the user. The

HTTP interface to the data, along with the language

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 5 of 9

independence of provisioning, makes it possible to

implement the user interface in a variety of technologies and

languages (C, Java, Flash, JavaScript, et al). This is a huge

advantage, as many user experience experts are used to

developing systems in languages other than those which may

be ideal for interfacing with sensors or expressing an

algorithm. By using a language neutral interface, we allow

the authors of each portion of the system to work with the

most appropriate tool for their problem and platform.

Storing and Offboarding Data

Algorithms will need historical trend data in order to

diagnose problems. Embedded platforms are inherently

resource constrained. This presents contention over the

amount of data that should be retained. We've taken the

position that no algorithm can be useful if the platform dies,

because it runs out of memory or storage. We've

implemented a purging task within the Arbor device server

that prunes historical data in order to keep the system

running smoothly. This purging task runs periodically.

When it purges data, it leaves a breadcrumb in the trace data.

This information is valuable for algorithms, because it tells

them the point past which no data is available. In certain

situations, it may be important to distinguish between the

absence of any data from the sensor (i.e., a broken sensor)

and the fact that data was reported but has been deleted to

save space.

PEER TO PEER MESSAGING

There are scenarios where multiple embedded platforms,

operating in a mesh network configuration want to read each

other’s sensor values. An example of this is a team with a set

of devices at a large sporting event using chemical sensors to

monitor the perimeter for threats. If any single device detects

an alarm, it is critical that the other devices and their

operators are made aware of the alarm. We use the zeroconf

[14] technology to address this scenario. With zeroconf, each

node in the mesh can listen for the other to put up a

notification flag, which means that it has an alarm. The other

nodes will detect this flag very quickly and then fetch the

sensor values from the device that raised the flag. Fetching

the values happens over the HTTP interface. By using

zeroconf and HTTP, along with common, open data formats,

we support this scenario easily, even if each of these devices

are supplied by different vendors and the resident

applications have been implemented different vendors

employing their own choices of programming language.

PROGNOSTIC & DIAGNOSTIC APPLICATIONS

Our scenario calls for the ability to arbitrarily create new

algorithms in support of diagnostic and prognostic needs for

a variety of vehicles and other mobile or remote equipment.

Given that mission, we know that we could face a wide array

of potential controls (sensors or actuators) in an infinite set

of potential configurations. Additionally, as time passes, we

will gain knowledge and experience that should help guide

all in designing better algorithms in the future. Therefore,

our expectation is that we will need to deploy new

algorithms to the mobile or remote equipment from time to

time in the future at irregular intervals in response to

circumstances.

An illustrative example communicates the capabilities of

Arbor best. With that in mind, we describe the context and

the implementation of a simple, multi-language example.

For the moment, we will set aside the mechanics of how

algorithms are provisioned to the remote platform. Instead

we will assume that a new prognostic algorithm has been

provisioned to the platform and explore how it is integrated

and provides feedback to the vehicle occupant and a remote

observer capable of peeking in on the vehicle.

Example Scenario

In this example scenario, we assume a commercial or

military vehicle out in the field with a standard set of

operating sensors that include the following controls:

• Fuel level sensor

• Clock

• Odometer

• Global positioning system (GPS) device

This simple algorithm will monitor the fuel level sensor to

determine the amount of fuel being used over time and the

odometer to determine how far the vehicle has traveled. By

monitoring these sensors, the algorithm should be able to

calculate the following outputs:

• Fuel economy

• Distance to empty

A more interesting feature that could be added with the

availability of the GPS and access to a database of fueling

depots would be to tell us which fuel depots are likely to be

in range of the vehicle. If the vehicle had a display unit

inside the vehicle, we would expect to see a map indicating

the location of the vehicle itself and color coding of fuel

depots positioned on the map indicating that they are in-

range (green), likely-in-range (yellow), or out-of-range (red),

given our prognosis for fuel economy and distance to empty

from the current location.

The Root System: Device Server

At the base of the architecture we have implemented what

we call the Device Server. The Device Server stores the data

from available sensors and actuators, more broadly

categorized as controls. This provides the system with the

ability to both listen to sensors to obtain readings and to send

messages to actuators directing them to perform some

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 6 of 9

action. For example, we may listen to the speedometer to

obtain the vehicle speed, which represents an interaction

with a sensor. We may also have the capability to direct a

solenoid to change a drill angle, thereby interacting with an

actuator. For commercial applications, most all sensor and

actuator communication travels across a Controller Area

Network (CAN) bus using a common message specification,

such as SAE J1939, J1750, or various others. It is also

possible to interact with any variety of other control

connections, such as I2C, GPIO, SPI, MIL STD 1553,

standard serial (RS-232, RS-485, RS-422, or MIL STD 188),

and many others.

We constructed the reference implementation for the

Device Server using embedded Java, the OSGi architecture,

and the Eclipse Equinox runtime [15]. The implementation

employs the Eclipse DeviceKit framework to assist in

managing the low-level device interfaces in order to talk to

the various connections. On top of this foundation rests a

device Servlet that handles interaction with applications that

want to communicate with the controls.

Figure 2: Device Server in Context

As shown in Figure 2, the Device Server wraps some

logical models of the controls and communicates with them

through the bus monitor. Application models, prognostic

algorithms, or diagnostic algorithms can easily interact with

the Device Server through the HTTP API. In this way, the

Device Server represents the data vault for Arbor, storing

data from the hardware interfaces to anchor the full

application platform.

Anatomy of an Algorithm

The algorithm itself is implemented in C/C++ and can be

segmented into two families of components: (1) algorithm

specific code, and (2) Arbor API specific code. As shown in

Figure 3, the algorithm specific code components are shown

in black boxes, while the Arbor API specific code is shown

in white boxes. The implementation makes use of the curl

[16] library, colored in gray, to perform the calls to the

Device Server.

Figure 3: Language & Notification Brittleness

Algorithm Initialization

Each algorithm that is deployed to the platform will need

to perform some initialization activities to register with the

Device Server. Once completed, the algorithm will have the

capacity to read from actual underlying controls.

Additionally, algorithms can request the creation of virtual

controls to which they can report, or post, their calculated

findings so that they can be reported to the vehicle occupants

or logged for later transmission.

Often, the first step in the process is to obtain a complete

inventory of the available shortnames for the set of available

controls. We accomplish this by querying the device extra-

data, as shown below in Figure 4, which responds with a list

of shortnames in the body of the response. (Note: The

reader may wish to refer to [13] for more information

regarding terminology used in this section).

The next step in the process is to get the complete extra-

data for the shortname of interest, in this case Odometer.

We will likely be iterating over all of the shortnames

returned to build a full list of the available controls, but here

we just look at the one of interest to us. The invocation of

the query is shown below, along with an excerpt of the

expected response. Within the list of extra-data items, the

one attribute that we are immediately interested in

identifying is the URI, which will provide us with the pointer

to where we will ultimately pull the data for the algorithm’s

input.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 7 of 9

Figure 4: Getting Available Controls

The attribute that we will need to reference is the key-

value pair of:

http://www.bandxi.com/rdf/2009/uri "

http://www.bandxi.com/cbm/2009/Odometer

Our algorithm only knows that the full URI specified as

the value above is the one in which we are truly interested.

Therefore, when we see it, we must infer that the

Odometer shortname is the actual shortname that we will

use as a reference to obtain the input data going forward. It

is important not to assume that we know the shortname a

priori, because it may not hold the information we actually

want. Only once we have matched the actual long URI, can

we be certain that the shortname is the correct one.

Figure 5: Getting A Single Control

In many cases, the algorithm may know the exact full URI

for which the shortname is being sought. A convenience

API is provided in which the long URI can be sent and the

correct shortname returned, as indicated in Figure 5. The

shortname is returned in a <key>=<value> pair format, so

that the requested long URI can be validated against the

<key> to ensure the correct shortname has been returned.

Monitoring the Controls

Now that we have confirmed the existence and identity of

the shortname of interest as Odometer, we can use it to

obtain the current control value by sending the request

illustrated below in Figure 6. The algorithm pulls the data at

whatever polling interval it requires in order to perform its

calculations.

Figure 6: Getting Current Control Reading

In the same manner, the algorithm can also collect

readings for the fuel level sensor. Given knowledge

concerning the miles traveled read from the odometer, fuel

consumed read from the fuel level sensor, and the amount of

time that has passed in order to synchronize the readings, the

algorithm can calculate the mission’s FuelEconomy by

simply assessing the number of miles per gallon utilized.

Additionally, knowing the amount of remaining fuel and the

fuel economy, the algorithm can also estimate the

MilesToEmpty, that is how much further the vehicle can

travel before running out of fuel. In this example, we have a

very simple diagnostic (FuelEconomy) and a very simple

prognostic (MilesToEmpty).

Providing Feedback Through Virtual Controls

When a running algorithm has information to report

concerning the vehicle health, we need to provide a way to

report that information. However, before we can provide

spot updates of a particular health assessment from the

algorithm, we need to create a virtual control inside the

Device Server that will host the new information that we

intend to report. The way in which this is done is illustrated

below in Figure 7 for FuelEconomy, where we do a POST to

define the virtual control that we will be updating for

recording and consumption by others.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 8 of 9

Figure 7: Creating a Virtual Control

As illustrated in Figure 8, once the virtual control is

defined, it is a simple POST action to write the current

value. The device server will log this value and it is

available to anyone interested in the current value, just the

same as any real control would be available.

Figure 8: Reporting to a Virtual Control

It would be reasonable to have an application monitoring

the algorithm’s output to provide information to the vehicle

operator or commander regarding what conditions are being

predicted. Figure 9 below shows a simple example user

interface for the examples of the FuelEconomy diagnostic

and the MilesToEmpty prognostic algorithms. The values

are presented as gauges on a dynamically displayed

graphical instrument cluster that was provisioned along with

the algorithm package to inform the vehicle occupants of

findings in real time. The application reads these values

through the exact same mechanism that the algorithms used

to read the fuel level sensor and odometer.

Figure 9: Virtual Control Display for Example

As described, any application can use the RESTful HTTP

API to send or receive readings on the platform. The

algorithm described was written in C/C++, but just as readily

could have been written in Java, MATLAB, FORTRAN, C#,

or any other language. Likewise, although the screen for the

gauges was written in Java, it could have readily been

written in C, Flash, JavaScript, or any technology available

for the platform on which it was running.

As an aside, because the API is defined using HTTP, the

various components are no longer constrained to running on

the same computer. In fact, it could be three separate

computers: (1) the Device Server monitoring the CAN bus,

(2) the display unit embedded in the dashboard, and (3) an

alternate sandboxed, single board computer that runs

algorithms. In fact, during the development process we have

used this capability to have a developer in North Carolina

start his monitoring application and connect to the Device

Server resident in Arizona, because only one engine control

unit was available at the time. We can easily firewall this

capability for production deployments using standard

network configurations, so it does not present a security

liability.

COMMERCIAL APPLICATION SUCCESS

For the past ten years, the authors of this paper have been

developing these kinds of open, extensible, remotely

maintainable information systems for a wide variety of

applications, but particularly for vehicles and mobile units.

The system architecture has been refined through application

to a several relevant domains, including:

• telematics systems (safety & security, vehicle status

reporting, infotainment)

• vehicle diagnostics and prognostics

• chemical, biological, radiological, nuclear, and

explosives (CBRNE) detection

• radio frequency identification (RFID) for retail and

military logistics

• situational awareness information sharing (video,

voice, photo, and text)

• medical and remote biometric instrumentation

• mining and construction heavy equipment, such as

salt harvesters, foundation drills, freight engines,

and wheel loaders.

With this approach, we can quickly address new

application requirements by defining new services and

building new code bundles that sit on top of the existing

frameworks, components and applications. This means that

our development cycle times for new applications can be

measured in days or weeks, instead of in months and years.

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al.

Page 9 of 9

BENEFITS

While there is No Silver Bullet [17], the Arbor architecture

has clear advantages over traditional approaches and moves

us closer to the ideal vision where software development

becomes a true engineering discipline.

Legacy Continuity: Given the ubiquity of HTTP support

in all languages, the Arbor architecture levels the playing

field for legacy and new applications. Any application can

be extended with an adapter that interacts with the Device

Server, rather than directly to the device driver. Not only

does this reduce system brittleness, but it allows several

applications to share access to the controls. Performance has

not been a problem for commercial applications, but we

would not recommend this for fire control systems as yet.

Reduced Cycle Times: On many occasions, we have

shortened development cycle times by an order of

magnitude. In one case, a team that had devoted three

months to developing an interface to the Media Oriented

Systems Transport (MOST), an optical vehicle bus for media

systems. Using an earlier approach similar to Arbor, we

were able to build a working implementation enabling pre-

existing audio control screens to connect to the radio and CD

player on the MOST bus. That effort took two days. Later,

on, another project we were asked if we had any ideas on

convoy spacing management. Again, with three days of

effort we had a prototype feature running that provided

convoy spacing information and collision warnings by

leveraging the pre-existing GPS services, user interface

shell, wireless communication services, and audio alert

services.

Higher Quality: With the cleaner, simpler interfaces, the

system design achieves the objective of being highly

cohesive, but loosely coupled. The resulting clean interfaces

can be tested using simulators well before bench testing and

equipment testing are ready. In that way, quality is designed

in from the start as testing is done from day zero.

Additionally, by relying on the Device Server, which is well

tested and robust, any problems encountered can usually be

isolated with repeatable test cases that prove where the error

lies. While building a complex RFID system for a

worldwide company, this approach of clean interfaces and

testing against simulators achieved a quality that was

immediately recognized by management. The system had

two orders of magnitude fewer known bugs when it shipped

than any other product in the division.

Cost Savings: Software development is an inherently

labor-intensive practice. Reduced cycle times and higher

quality translate directly into lower labor costs – whether for

new development, integration, or maintenance.

SUMMARY

Arbor brings a significant number of benefits to system

integrators. These benefits include shorter development

cycles, cost savings, and higher quality, while protecting

investments in legacy applications. Arbor based systems

have achieved a high level of technology readiness and are

primed to help solve the prognostic and diagnostic

challenges of the future.

REFERENCES

[1] http://www.acq.osd.mil/osjtf/index.html

[2] http://www.nswc.navy.mil/wwwDL/B/OACE/

[3] http://www.eclipse.org

[4] http://www.osgi.org

[5] Brooks, Dr. Fred P., and Gerrit Blaauw, Computer

Architecture: Concepts and Evolution, Addison Wesley

Professional, 1997.

[6] Klyne, Graham and Jeremy Carroll, Resource Description

Framework (RDF): Concepts and Abstract Syntax, World

Wide Web Consortium (W3C), 2004.

[7] Manola, Frank and Erica Miller, Editors, RDF Primer,

World Wide Web Consortium (W3C), 2004.

[8] Antoniou, Grigoris, A Semantic Web Primer, 2nd Edition,

MIT Press, 2008.

[9] Smith, Michael, Chris Welty, and Deborah McGuiness,

OWL: Web Ontology Language Guide, World Wide Web

Consortium (W3C), 2004.

[10] Lacy, Lee, Owl: Representing Information Using the Web

Ontology Language, Trafford Publishing, 2005.

[11] Crockford, D., “JavaScript Object Notation: Request for

Comment 4627”, The Internet Engineering Task Force:

Network Working Group, 2006.

[12] http://cdf.gsfc.nasa.gov/

[13] Branigan James, John Cunningham, Patrick Dempsey,

Brett Hackleman, and Paul VanderLei, “Bringing Best

Practices from Web Development into the Vehicle”,

Proceedings of the 2009 Ground Vehicle Systems

Engineering and Technology Symposium, Detroit, 2009.

[14] http://www.zeroconf.org/

[15] http://www.eclipse.org/equinox/

[16] http://en.wikipedia.org/wiki/CURL

[17] Brooks, F. P., "No Silver Bullet: Essence and Accident in

Software Engineering", Proceedings of the IFIP Tenth

World Computing Conference, pp. 1069-1076, 1986.

