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ABSTRACT 

A combination of real world experience and new research initiatives will open up the universe of 

prognostic and diagnostic algorithms that can be created in the future.  This presents the challenge of creating a 

system architecture that enables effective support of an infinite set of future algorithms even before they have 

been conceived, designed, implemented, tested, and approved for use.  The Arbor architecture enables five 

critical elements to meet this challenge: (1) clean integration between legacy and new software, (2) remote, over 

the air provisioning of algorithms, (3) flexible data structures capable of evolving, (4) control points for the 

algorithm to report findings to in-vehicle occupants, and (4) a data collection strategy for failure incident 

reporting. Many algorithms are impossible to develop until we collect real world performance and failure 

information from on the vehicle.  The Arbor system collects this information and feeds it off-board for analysis.  

Researchers analyze the data and develop diagnostic or prognostic algorithms that can then be deployed to a 

single vehicle experiencing odd behaviors or to an entire fleet, preemptively.   A prognostic algorithm written, or 

modified, as an Arbor application can define its own outputs, which are then visible to the vehicle operator.  

These same outputs can be broadcast to a service technician with a diagnostic scan tool or to a remote 

operational command site, contingent on available communications links. Effective deployment of prognostic 

algorithms enables costly failures to be predicted ahead of time, thereby improving safety, reducing costs, and 

minimizing down time for equipment in order to effect more efficient fleet operations. 

 

INTRODUCTION 

The lifecycle of a vehicle model spans many years.  Actual 

field deployments uncover usage patterns that stress the 

vehicle and its systems in new ways that result in failures.  

Such failures may occur in unforeseen patterns or even in 

carefully designed and rigorously tested subsystems or 

individual components.  Ideally, design engineers would 

benefit from having an agent resident on the vehicle to 

observe vehicle behaviors, collect observations, and transmit 

data back to them for analysis. Unfortunately, they cannot 

know a priori what data, or with what frequency, needs to be 

collected so that this capability can be built into the base 

system. With access to the right data, engineers could 

analyze the actual field performance and develop effective 

diagnostic and prognostic algorithms that could aid 

personnel in at least diagnosing problems, if not providing 

them advance warning of an impending failure.  The 

subsequent challenge revolves around deploying these 

algorithms as vehicle agents.  Each algorithm should be a 

deployable unit to the vehicle.  Each algorithm should be 

capable of providing useful information to the occupants of 

the vehicle about failures, encountered or impending, as well 

as collecting specialized relevant data and transmitting it 

back to the engineers for further analysis or record keeping. 

Supporting this scenario requires an open, component-

based system architecture that facilitates integration of 

heterogeneous components and evolution of underlying data 

models.  Unfortunately, nearly all embedded software is 

developed as monolithic applications over very long periods 
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that include extensive and punishing system integration 

testing.  Their complexity alone often precludes 

modification once they have been completed and deployed.  

When updates and upgrades are available, these must pass 

through the same rigorous testing procedures and then flow 

through to an arduous manual installation procedure.  This 

process can be time consuming, costly, and requires manual 

intervention. 

This paper introduces the Arbor system architecture for in-

vehicle computing to address the challenges of creating an 

open component-based in-vehicle computing platform that 

can grow stronger in response to the challenges encountered 

over time.  Arbor offers a strong root system that integrates 

closely with the vehicle bus and on board sensors, with the 

ability to reach deeper into the vehicle and extend more 

broadly to new sensors.  Additionally, the component-based 

model facilitates the growth of new branches to the system 

that can extend the available functionality to serve new 

missions, accommodate new subsystems, and more richly 

support existing capabilities. 

Arbor enables a class of applications, running on remote 

devices that sense and interact with their environment. These 

applications minimally consist of a sensing/controlling 

portion, a logic portion, and a notification portion. The 

sensing/controlling may interact with a multitude of 

hardware sensors, including but not limited to Global 

Positioning System devices (GPS), SAE J1939 devices 

(CAN), Radio Frequency Identification (RFID) devices, 

Programmable Logic Controllers (PLC), cameras, and radar 

devices. The logic portion may run on the embedded 

computing device, a handheld device, or remotely in a server 

environment. The notification portion may utilize a screen to 

notify an operator in the case of an in-vehicle system.  

Alternatively, in the event of a remote sensor alarm, the 

notification portion may send a high priority message to 

headquarters or broadcast a peer-to-peer notification over a 

deployed mesh network. There are many notification cases 

along the spectrum that the Arbor system can support.  

This paper focuses specifically on Arbor’s capability to 

accommodate the needs of the prognostics and diagnostics 

community.  Arbor has already been fielded for commercial 

equipment used in mining and construction, such as salt 

harvesters and foundation drills.  These fielded systems 

monitor and direct a variety of sensors and actuators 

connected to the J1939 CAN bus within the vehicle and also 

collect, present, store, and forward diagnostic messages for 

the vehicle occupant and engineers. 

THE CHALLENGE 

In a nutshell, the problem we are address revolves around 

how to create an open platform for developing and 

deploying applications that:  

• Acquire sensor data,  

• Analyze the data,  

• Turn the data into useful information, and 

• Relay that information to someone to use. 

The fact that these systems will be deployed to in-vehicle 

computing platforms that operate far from typical data 

centers or software engineering facilities further complicates 

the problem.  These applications need to be installed, 

patched and managed remotely and in quantity. General 

connectivity may be intermittent, at best, and possibly quite 

low bandwidth even when available.  We assume that 

periodically, the vehicles will be in range of base motor 

pools where local connectivity would be stable and quite 

fast. Additional constraints arise, because in-vehicle 

hardware platforms typically consist of slower and less 

powerful cores than standard desktop PCs. 

Furthermore, in-vehicle applications, specifically 

algorithms, will be developed and deployed over the full 

lifetime of a fielded vehicle model, by a variety of vendors 

using a range of programming languages. In order to achieve 

the goal of building such an open platform, it is critical to 

define both a data model and a system architecture that 

supports the development of an open-ended, modular, 

dynamically updatable, multi-programming language 

capable application platform. The Arbor system architecture 

and data model describes a reference implementation that 

has been refined and executed over time to meet these 

objectives. 

DOD BROAD SYSTEM OBJECTIVES 

Over the last decade, the United States military has made a 

dedicated effort toward adopting open, standards-based and 

commercial off the shelf (COTS) computing software and 

hardware.  Programs such as the Department of Defense 

(DoD) Open Systems Joint Task Force (OSJTF) [1] and the 

Navy’s Open Architecture Computing Environment (OACE) 

[2] have shown how using open standards-based solutions 

results in reduced cost, faster development, and greater 

flexibility. 

For example, the open source Linux operating system has 

gained tremendous traction in the military due to its level of 

POSIX conformance, widespread availability, large 

developer and user base, and resulting lower development 

and maintenance costs.  Simply put, the cost of technology 

change in open standards and open source architectures is 

significantly less than it is with proprietary architectures. 
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Beyond the platform level (hardware, device drivers, and 

operating systems), open standards are developing for 

tooling platforms (Eclipse Foundation) [3] and application 

architectures and deployment (Open Services Gateway 

Initiative Alliance) [4]. 

Prior interactions with the US Army Research, 

Development, and Engineering Command (RDECOM) have 

drawn out the following broad objectives in developing 

future vehicle based systems: 

• Open System Architecture 

• Scalable, Integrated, and Modular 

• Reliable, Available, and Maintainable 

• Long Term Evolution Capability 

• Reduced Procurement and Maintenance Costs 

• Security Capabilities 

• Training and Knowledge Transfer 

LEGACY INTEGRATION 

Proposing any new system architecture inevitably faces 

resistance to change.  Such resistance is often based in very 

real, economic concerns regarding existing legacy systems.  

Large investments have been made in the design, 

development, testing, deployment, improvement, and 

maintenance of the existing software and systems.  No 

responsible proposal would advocate a discontinuous jump 

to any new system architecture without providing a means to 

integrate the legacy base.  Arbor’s design explicitly held 

legacy integration as a primary, and critical, requirement. 

Arbor provides an open, standards compliant mechanism 

for supplying existing applications with a clean and simple 

mechanism for pulling low-level data from devices.  

Additionally, Arbor uses a similar mechanism enabling 

legacy applications to post information for recording or 

controlling devices. A more detailed discussion of these 

mechanisms follows below through the example described. 

PROVISIONING 

Any well-designed, open, modular system architecture 

should include a story for providing updates and upgrades to 

the base system.  Here, we define an update as any 

correction or improvement to existing functionality and 

upgrade to mean the addition of new functionality.  We refer 

to the process, procedures, and technologies employed to 

deliver updates and upgrades as provisioning.  We name a 

given update or upgrade packaged for provisioning an 

installable unit.  The contents of an installable unit may 

consist of code and/or data.  The code may be in any 

programming language and may be in source form (shell 

scripts) or compiled (shared object libraries or executables). 

The data may be a resource (language fonts, images, etc.) or 

configuration files.   

The Arbor system architecture incorporates provisioning 

technology developed under the auspices of the Eclipse 

Foundation and widely used to manage and deploy 

installations of the Eclipse IDE itself, as well as runtime 

applications built using Eclipse runtime technologies. This 

provisioning technology is codenamed P2. Band XI has 

played a central role in driving P2 to address the unique 

challenges of resource constrained embedded platforms.  

Although Eclipse built P2 using Java, we have helped drive 

the Eclipse team to separate provisioning concerns in such a 

way as to allow a non-Java, native provisioning agent to 

reside on the embedded platform.  Furthermore, P2 can 

provision installable units that contain arbitrary resources 

and code. This allows us to provision algorithms written in 

C, MATLAB, or any other programming language. 

The Arbor system can safely provision new algorithms 

without worrying about impacting already installed 

algorithms. It can also patch the sensing portion of the 

application without worrying about destabilizing the 

integration with the algorithm. This architecture is open, 

scalable, modular, reliable, maintainable, easy to learn and 

use, and provides a powerful model for long-range reuse and 

evolution. As Figure 1 illustrates, what you are really after is 

unparalleled operational quality in the systems you deploy.  

We achieve this quality by combining reliability, 

availability, and maintainability. 

 

Quality 

 

Figure 1: Operational Quality = Reliability !  

Availability !  Maintainability 

By leveraging the capabilities of P2, Arbor allows the 

teams responsible for vehicle operations to maintain and 

enhance the products and services in the field – 24 x7 x 365.  

The software in products, and the services around them, can 

now be updated dynamically via secure networks, to fix 

problems, or add new functionality that adds value to the 

soldier’s devices or to make services available on a range of 

different-brand devices deployed across the service. These 

innovative capabilities open completely new opportunities 

for lower-cost maintenance and repair, or the availability to 

add valuable new features without taking units out of 

service. Expensive recalls and high development costs can 

be reduced to meet increasing mission demands. 



Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Infinite Prognostics & Diagnostics: A Software Architecture to Support P/D Algorithms Before They Even Exist, Branigan, et al. 

 

Page 4 of 9 

ARBOR SYSTEM ARCHITECTURE 

We’ve already mentioned that legacy application 

integration and application provisioning significantly drove 

the design of Arbor.  It’s important to also understand the 

general system engineering principles that drove the 

development of Arbor. 

The principles of quality for computer architecture are well 

described by Dr. Fred P. Brooks and Dr. Gerrit A. Blaauw in 

their book Computer Architecture: Concepts and Evolution. 

[5] We appeal to these principles when faced with design 

decisions. Weighing a design decision against each of the 

principles helps to guide us to the right decision for the 

architecture by enhancing its quality, extending its 

usefulness, and lowering its long run cost.  Brooks and 

Blaauw state that high quality architectures should have the 

following properties.  

• Consistent  

• Proper  

• Orthogonal  

• General  

• Parsimonious  

• Transparent  

• Open-ended  

• Complete  

There are five high-level constraints that we must meet 

with the Arbor system architecture and data model.  

• Must perform on embedded platforms  

• Must be capable of remotely provisioning new 

features and bug fixes  

• Must be programming language agnostic  

• Must have vendor independent interfaces  

• Must support existing data formats  

We have learned a great deal from our past projects 

building embedded systems. Filtering that experience 

through the guiding principles listed above has lead us to 

develop a set of more concrete, derived principles.  

• Data formats must be open  

• Don't invent unless necessary  

• Simplicity is the answer for complexity, not more 

complexity  

• Programming language to programming language 

interfaces should be avoided  

• Avoid using push style notification, because pull 

notification scales, while push notification does not  

• Do not build a walled garden, a closed set or 

exclusive set of services that create a monopoly  

The Arbor Data Model is conceptually based on the World 

Wide Web Consortium’s (W3C) Resource Description 

Framework (RDF). [6,7] The RDF is an incredibly simple 

and flexible resource model and the basis of the Semantic 

Web [8]. The most well known form of RDF is the RDF-

XML format, however there are other published 

representations of the RDF data model.  The data model 

vocabulary is described in the Web Ontology Language 

(OWL). [9,10]  Using OWL to describe the data model 

provides myriad benefits, once the data is safely off boarded.  

Data can be reasoned about using automated and 

probabilistic methods.  This makes the task of creating new 

prognostic algorithms simpler and faster.   

The Arbor Data Model uses the RDF data model to model 

the discrete sensor events received and the actuator events 

sent by the embedded platform. Arbor stores and marshals 

this data in several simple formats that are known to be 

efficient on embedded platforms: Comma Separated Values 

(CSV) and JavaScript Object Notation (JSON) [11]. Band 

XI has also investigated supporting the Common Data 

Format (CDF) [12], using COBRA data from a Bradley 

Fighting Vehicle. 

From a vehicle systems domain perspective, the core 

functions of the system architecture are to support the 

following:  

• Sensing & Logic Integration  

• Provisioning  

• Operator User Interface  

• Storing and Offboarding Data  

• Peer-to-Peer Messaging 

We explore each of these functional requirements below. 

Sensing & Logic Integration  

Considering the earlier critical constraint of embracing 

legacy applications, we already know that the sensing and 

logic portions will be written in different programming 

languages. This elevates the need to bridge the gap between 

the languages in order to transmit the sensor data. The need 

for a system level mechanism for integrating the sensing and 

logic portions led us to consider multiple different 

integration patterns.  We chose an integration pattern based 

on the design of the World Wide Web.    The details of this 

design decisions are described in our paper “Bringing Best 

Practices from Web Development into the Vehicle” [13]. 

Operator User Interface  

The in-vehicle operator’s user interface acts as a client to 

the sensing platform, just like an algorithm is a client to the 

sensing platform. The operator user interface discovers the 

data for the sensors it cares about and then locates the latest 

values of those sensors and displays them to the user. The 

HTTP interface to the data, along with the language 
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independence of provisioning, makes it possible to 

implement the user interface in a variety of technologies and 

languages (C, Java, Flash, JavaScript, et al). This is a huge 

advantage, as many user experience experts are used to 

developing systems in languages other than those which may 

be ideal for interfacing with sensors or expressing an 

algorithm. By using a language neutral interface, we allow 

the authors of each portion of the system to work with the 

most appropriate tool for their problem and platform.  

Storing and Offboarding Data  

Algorithms will need historical trend data in order to 

diagnose problems. Embedded platforms are inherently 

resource constrained. This presents contention over the 

amount of data that should be retained. We've taken the 

position that no algorithm can be useful if the platform dies, 

because it runs out of memory or storage. We've 

implemented a purging task within the Arbor device server 

that prunes historical data in order to keep the system 

running smoothly. This purging task runs periodically. 

When it purges data, it leaves a breadcrumb in the trace data. 

This information is valuable for algorithms, because it tells 

them the point past which no data is available. In certain 

situations, it may be important to distinguish between the 

absence of any data from the sensor (i.e., a broken sensor) 

and the fact that data was reported but has been deleted to 

save space.  

PEER TO PEER MESSAGING  

There are scenarios where multiple embedded platforms, 

operating in a mesh network configuration want to read each 

other’s sensor values. An example of this is a team with a set 

of devices at a large sporting event using chemical sensors to 

monitor the perimeter for threats. If any single device detects 

an alarm, it is critical that the other devices and their 

operators are made aware of the alarm. We use the zeroconf  

[14] technology to address this scenario. With zeroconf, each 

node in the mesh can listen for the other to put up a 

notification flag, which means that it has an alarm. The other 

nodes will detect this flag very quickly and then fetch the 

sensor values from the device that raised the flag. Fetching 

the values happens over the HTTP interface. By using 

zeroconf and HTTP, along with common, open data formats, 

we support this scenario easily, even if each of these devices 

are supplied by different vendors and the resident 

applications have been implemented different vendors 

employing their own choices of programming language.  

PROGNOSTIC & DIAGNOSTIC APPLICATIONS 

Our scenario calls for the ability to arbitrarily create new 

algorithms in support of diagnostic and prognostic needs for 

a variety of vehicles and other mobile or remote equipment.  

Given that mission, we know that we could face a wide array 

of potential controls (sensors or actuators) in an infinite set 

of potential configurations.  Additionally, as time passes, we 

will gain knowledge and experience that should help guide 

all in designing better algorithms in the future.  Therefore, 

our expectation is that we will need to deploy new 

algorithms to the mobile or remote equipment from time to 

time in the future at irregular intervals in response to 

circumstances. 

An illustrative example communicates the capabilities of 

Arbor best.  With that in mind, we describe the context and 

the implementation of a simple, multi-language example. 

For the moment, we will set aside the mechanics of how 

algorithms are provisioned to the remote platform.  Instead 

we will assume that a new prognostic algorithm has been 

provisioned to the platform and explore how it is integrated 

and provides feedback to the vehicle occupant and a remote 

observer capable of peeking in on the vehicle. 

Example Scenario 

In this example scenario, we assume a commercial or 

military vehicle out in the field with a standard set of 

operating sensors that include the following controls: 

• Fuel level sensor 

• Clock 

• Odometer 

• Global positioning system (GPS) device 

This simple algorithm will monitor the fuel level sensor to 

determine the amount of fuel being used over time and the 

odometer to determine how far the vehicle has traveled.  By 

monitoring these sensors, the algorithm should be able to 

calculate the following outputs: 

• Fuel economy 

• Distance to empty 

A more interesting feature that could be added with the 

availability of the GPS and access to a database of fueling 

depots would be to tell us which fuel depots are likely to be 

in range of the vehicle.  If the vehicle had a display unit 

inside the vehicle, we would expect to see a map indicating 

the location of the vehicle itself and color coding of fuel 

depots positioned on the map indicating that they are in-

range (green), likely-in-range (yellow), or out-of-range (red), 

given our prognosis for fuel economy and distance to empty 

from the current location. 

The Root System: Device Server 

At the base of the architecture we have implemented what 

we call the Device Server. The Device Server stores the data 

from available sensors and actuators, more broadly 

categorized as controls.  This provides the system with the 

ability to both listen to sensors to obtain readings and to send 

messages to actuators directing them to perform some 
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action.  For example, we may listen to the speedometer to 

obtain the vehicle speed, which represents an interaction 

with a sensor.  We may also have the capability to direct a 

solenoid to change a drill angle, thereby interacting with an 

actuator.  For commercial applications, most all sensor and 

actuator communication travels across a Controller Area 

Network (CAN) bus using a common message specification, 

such as SAE J1939, J1750, or various others.  It is also 

possible to interact with any variety of other control 

connections, such as I2C, GPIO, SPI, MIL STD 1553, 

standard serial (RS-232, RS-485, RS-422, or MIL STD 188), 

and many others.   

We constructed the reference implementation for the 

Device Server using embedded Java, the OSGi architecture, 

and the Eclipse Equinox runtime [15].  The implementation 

employs the Eclipse DeviceKit framework to assist in 

managing the low-level device interfaces in order to talk to 

the various connections.  On top of this foundation rests a 

device Servlet that handles interaction with applications that 

want to communicate with the controls. 

 

Figure 2: Device Server in Context 

As shown in Figure 2, the Device Server wraps some 

logical models of the controls and communicates with them 

through the bus monitor.  Application models, prognostic 

algorithms, or diagnostic algorithms can easily interact with 

the Device Server through the HTTP API.  In this way, the 

Device Server represents the data vault for Arbor, storing 

data from the hardware interfaces to anchor the full 

application platform. 

Anatomy of an Algorithm 

The algorithm itself is implemented in C/C++ and can be 

segmented into two families of components: (1) algorithm 

specific code, and (2) Arbor API specific code.  As shown in 

Figure 3, the algorithm specific code components are shown 

in black boxes, while the Arbor API specific code is shown 

in white boxes. The implementation makes use of the curl 

[16] library, colored in gray, to perform the calls to the 

Device Server. 

 

Figure 3: Language & Notification Brittleness 

Algorithm Initialization 

Each algorithm that is deployed to the platform will need 

to perform some initialization activities to register with the 

Device Server.  Once completed, the algorithm will have the 

capacity to read from actual underlying controls.  

Additionally, algorithms can request the creation of virtual 

controls to which they can report, or post, their calculated 

findings so that they can be reported to the vehicle occupants 

or logged for later transmission. 

Often, the first step in the process is to obtain a complete 

inventory of the available shortnames for the set of available 

controls.  We accomplish this by querying the device extra-

data, as shown below in Figure 4, which responds with a list 

of shortnames in the body of the response.  (Note: The 

reader may wish to refer to [13] for more information 

regarding terminology used in this section). 

The next step in the process is to get the complete extra-

data for the shortname of interest, in this case Odometer.   

We will likely be iterating over all of the shortnames 

returned to build a full list of the available controls, but here 

we just look at the one of interest to us.  The invocation of 

the query is shown below, along with an excerpt of the 

expected response.  Within the list of extra-data items, the 

one attribute that we are immediately interested in 

identifying is the URI, which will provide us with the pointer 

to where we will ultimately pull the data for the algorithm’s 

input. 
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Figure 4: Getting Available Controls 

The attribute that we will need to reference is the key-

value pair of: 

http://www.bandxi.com/rdf/2009/uri " 

http://www.bandxi.com/cbm/2009/Odometer 

Our algorithm only knows that the full URI specified as 

the value above is the one in which we are truly interested. 

Therefore, when we see it, we must infer that the 

Odometer shortname is the actual shortname that we will 

use as a reference to obtain the input data going forward.  It 

is important not to assume that we know the shortname a 

priori, because it may not hold the information we actually 

want.  Only once we have matched the actual long URI, can 

we be certain that the shortname is the correct one. 

 

Figure 5: Getting A Single Control 

In many cases, the algorithm may know the exact full URI 

for which the shortname is being sought.  A convenience 

API is provided in which the long URI can be sent and the 

correct shortname returned, as indicated in Figure 5.  The 

shortname is returned in a <key>=<value> pair format, so 

that the requested long URI can be validated against the 

<key> to ensure the correct shortname has been returned. 

Monitoring the Controls 

Now that we have confirmed the existence and identity of 

the shortname of interest as Odometer, we can use it to 

obtain the current control value by sending the request 

illustrated below in Figure 6.  The algorithm pulls the data at 

whatever polling interval it requires in order to perform its 

calculations. 

 

Figure 6: Getting Current Control Reading 

In the same manner, the algorithm can also collect 

readings for the fuel level sensor.  Given knowledge 

concerning the miles traveled read from the odometer, fuel 

consumed read from the fuel level sensor, and the amount of 

time that has passed in order to synchronize the readings, the 

algorithm can calculate the mission’s FuelEconomy by 

simply assessing the number of miles per gallon utilized.  

Additionally, knowing the amount of remaining fuel and the 

fuel economy, the algorithm can also estimate the 

MilesToEmpty, that is how much further the vehicle can 

travel before running out of fuel.  In this example, we have a 

very simple diagnostic (FuelEconomy) and a very simple 

prognostic (MilesToEmpty). 

Providing Feedback Through Virtual Controls 

When a running algorithm has information to report 

concerning the vehicle health, we need to provide a way to 

report that information.  However, before we can provide 

spot updates of a particular health assessment from the 

algorithm, we need to create a virtual control inside the 

Device Server that will host the new information that we 

intend to report.  The way in which this is done is illustrated 

below in Figure 7 for FuelEconomy, where we do a POST to 

define the virtual control that we will be updating for 

recording and consumption by others.    
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Figure 7: Creating a Virtual Control 

As illustrated in Figure 8, once the virtual control is 

defined, it is a simple POST action to write the current 

value.  The device server will log this value and it is 

available to anyone interested in the current value, just the 

same as any real control would be available. 

 

Figure 8: Reporting to a Virtual Control 

It would be reasonable to have an application monitoring 

the algorithm’s output to provide information to the vehicle 

operator or commander regarding what conditions are being 

predicted.  Figure 9 below shows a simple example user 

interface for the examples of the FuelEconomy diagnostic 

and the MilesToEmpty prognostic algorithms.  The values 

are presented as gauges on a dynamically displayed 

graphical instrument cluster that was provisioned along with 

the algorithm package to inform the vehicle occupants of 

findings in real time.  The application reads these values 

through the exact same mechanism that the algorithms used 

to read the fuel level sensor and odometer.  

 

Figure 9: Virtual Control Display for Example 

As described, any application can use the RESTful HTTP 

API to send or receive readings on the platform.  The 

algorithm described was written in C/C++, but just as readily 

could have been written in Java, MATLAB, FORTRAN, C#, 

or any other language.  Likewise, although the screen for the 

gauges was written in Java, it could have readily been 

written in C, Flash, JavaScript, or any technology available 

for the platform on which it was running.   

As an aside, because the API is defined using HTTP, the 

various components are no longer constrained to running on 

the same computer.  In fact, it could be three separate 

computers: (1) the Device Server monitoring the CAN bus, 

(2) the display unit embedded in the dashboard, and (3) an 

alternate sandboxed, single board computer that runs 

algorithms.  In fact, during the development process we have 

used this capability to have a developer in North Carolina 

start his monitoring application and connect to the Device 

Server resident in Arizona, because only one engine control 

unit was available at the time.  We can easily firewall this 

capability for production deployments using standard 

network configurations, so it does not present a security 

liability. 

COMMERCIAL APPLICATION SUCCESS 

For the past ten years, the authors of this paper have been 

developing these kinds of open, extensible, remotely 

maintainable information systems for a wide variety of 

applications, but particularly for vehicles and mobile units.  

The system architecture has been refined through application 

to a several relevant domains, including: 

• telematics systems (safety & security, vehicle status 

reporting, infotainment)  

• vehicle diagnostics and prognostics 

• chemical, biological, radiological, nuclear, and 

explosives (CBRNE) detection 

• radio frequency identification (RFID) for retail and 

military logistics 

• situational awareness information sharing (video, 

voice, photo, and text) 

• medical and remote biometric instrumentation 

• mining and construction heavy equipment, such as 

salt harvesters, foundation drills, freight engines, 

and wheel loaders. 

With this approach, we can quickly address new 

application requirements by defining new services and 

building new code bundles that sit on top of the existing 

frameworks, components and applications.  This means that 

our development cycle times for new applications can be 

measured in days or weeks, instead of in months and years. 
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BENEFITS 

While there is No Silver Bullet [17], the Arbor architecture 

has clear advantages over traditional approaches and moves 

us closer to the ideal vision where software development 

becomes a true engineering discipline. 

Legacy Continuity: Given the ubiquity of HTTP support 

in all languages, the Arbor architecture levels the playing 

field for legacy and new applications.  Any application can 

be extended with an adapter that interacts with the Device 

Server, rather than directly to the device driver.  Not only 

does this reduce system brittleness, but it allows several 

applications to share access to the controls.  Performance has 

not been a problem for commercial applications, but we 

would not recommend this for fire control systems as yet. 

Reduced Cycle Times: On many occasions, we have 

shortened development cycle times by an order of 

magnitude.  In one case, a team that had devoted three 

months to developing an interface to the Media Oriented 

Systems Transport (MOST), an optical vehicle bus for media 

systems.   Using an earlier approach similar to Arbor, we 

were able to build a working implementation enabling pre-

existing audio control screens to connect to the radio and CD 

player on the MOST bus.  That effort took two days.  Later, 

on, another project we were asked if we had any ideas on 

convoy spacing management.  Again, with three days of 

effort we had a prototype feature running that provided 

convoy spacing information and collision warnings by 

leveraging the pre-existing GPS services, user interface 

shell, wireless communication services, and audio alert 

services.  

Higher Quality: With the cleaner, simpler interfaces, the 

system design achieves the objective of being highly 

cohesive, but loosely coupled.  The resulting clean interfaces 

can be tested using simulators well before bench testing and 

equipment testing are ready.  In that way, quality is designed 

in from the start as testing is done from day zero.  

Additionally, by relying on the Device Server, which is well 

tested and robust, any problems encountered can usually be 

isolated with repeatable test cases that prove where the error 

lies.  While building a complex RFID system for a 

worldwide company, this approach of clean interfaces and 

testing against simulators achieved a quality that was 

immediately recognized by management.  The system had 

two orders of magnitude fewer known bugs when it shipped 

than any other product in the division. 

Cost Savings: Software development is an inherently 

labor-intensive practice.  Reduced cycle times and higher 

quality translate directly into lower labor costs – whether for 

new development, integration, or maintenance. 

SUMMARY 

Arbor brings a significant number of benefits to system 

integrators.  These benefits include shorter development 

cycles, cost savings, and higher quality, while protecting 

investments in legacy applications.   Arbor based systems 

have achieved a high level of technology readiness and are 

primed to help solve the prognostic and diagnostic 

challenges of the future. 
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